

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021

Question Paper Log Number P71100A

Publications Code WFM01_01_2110_MS

All the material in this publication is copyright

© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme		Notes	Marks
1(a)	$\mathbf{A}^{-1} = \frac{1}{3 \times -2 - a \times -2} \begin{pmatrix} -2 & -a \\ 2 & 3 \end{pmatrix}$	slips in t	te method for the inverse. Allow the determinant and at most one the adjoint matrix.	M1
	$=\frac{1}{2a-6}\begin{pmatrix} -2 & -a\\ 2 & 3 \end{pmatrix}$	Correct	inverse	A1
				(2)
(b)	$\mathbf{A} + \mathbf{A}^{-1} = \mathbf{I} \Rightarrow \begin{pmatrix} 3 & a \\ -2 & -2 \end{pmatrix} + \frac{1}{2a - 6} \begin{pmatrix} -2 & -a \\ 2 & 3 \end{pmatrix} =$		processed correctly and no equation implies an incorrect	M1
	$3 + \frac{2}{6 - 2a} = 1, a + \frac{a}{6 - 2a} = 0, -2 + \frac{2}{2a - 2a}$ Uses one of the elements to set up a surface. Allow a sign slip in the $6 - 2a$ but	itable equa	ation and solves for a .	dM1
	$a = \frac{7}{2}$ oe	Correct	value and no others	A1
				(3)
				Total 5

Question Number	Scheme		Notes	Marks
2(a)	$f(x) = 7\sqrt{x} - \frac{1}{2}x^3 - \frac{5}{3x} \qquad x > 0$			
	f(2.8) = 0.1420022 f(2.9) = -0.8486421		Attempts both f(2.8) and f(2.9) with at least one correct to 1 s.f.	M1
	Sign change (positive, negative) and $f(x)$ therefore (a root) α is between $x = 2.8$ a		Both f(2.8) = awrt 0.1 (or truncated) and f(2.9) = awrt -0.8 (or truncated), sign change, continuous and minimal conclusion.	A1
(1.) (2)				(2)
(b)(i)	$f'(x) = \frac{7}{2}x^{-\frac{1}{2}} - \frac{3}{2}x^2 + \frac{5}{3x^2}$		$x^n \to x^{n-1}$ at least once	M1
	$2^{x} 2^{x} 3x^{2}$		Correct derivative	A1
(b)(ii)	$x_1 = 2.8 - \frac{f(2.8)}{f'(2.8)} = 2.8 - \frac{0.14200}{-9.455}$)2276 7649	Correct application of Newton-Raphson. If no substitution/values see accept a correct statement followed by a value for the attempt.	M1
	= 2.815		cao following a correct derivative.	A1
(c)	$\frac{2.9 - \alpha}{0.8486421875} = \frac{\alpha - 2.8}{0.14200227}$	762	Any correct or implied linear interpolation statement.	B1
	$\alpha = \frac{2.8 \times 0.8486421875}{0.8486421875}$ Rearranges an equation suitable form (e.g. a give			M1
	= 2.814		cao	A1
Alt (c)	$\frac{x}{0.1420022762} = \frac{0.1}{0.1420022762+0.0}$	8486421875	Any correct or implied linear interpolation statement for <i>x</i> distance.	B1
	0.4×0.1420022762			M1
	$\alpha = 2.8 + x = 2.8 + \frac{0.4 \times 0.1420022762}{0.8486421875 + 0.1420022762} =$ Rearranges and adds 2.8 to give $\alpha =$			
	= 2.814		cao	A1
				(3)
				Total 9

Question Number	Scheme	Notes	Marks
3	$2x^2 - 5x + 7 = 0$		
(a)	$\alpha + \beta = \frac{5}{2}, \alpha\beta = \frac{7}{2}$	Both	B1
a > 4>			(1)
(b)(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	Attempts to use a correct identity	M1
	$= \left(\frac{5}{2}\right)^2 - 2\left(\frac{7}{2}\right) = -\frac{3}{4}$	cso – must have scored the B1	A1
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$	Attempts to use a correct identity	M1
	$= \left(\frac{5}{2}\right)^3 - 3\left(\frac{7}{2}\right)\left(\frac{5}{2}\right) = -\frac{85}{8}$	cso – must have scored the B1	A1
			(4)
(6)	Sum = $\frac{1}{\alpha^2 + \beta} + \frac{1}{\beta^2 + \alpha} = \frac{\alpha^2 + \beta + \beta^2 + \alpha}{(\alpha^2 + \beta)(\beta^2 + \alpha)}$ = $\frac{\alpha^2 + \beta^2 + \alpha + \beta}{\alpha^2 \beta^2 + \alpha^3 + \beta^3 + \alpha\beta} = \frac{-\frac{3}{4} + \frac{5}{2}}{\frac{49}{4} - \frac{85}{8} + \frac{7}{2}} \left(= \frac{14}{41} \right)$ Attempts sum – substitutes their into a correct numerator must but allow slips in the denominator as long as 4 terms are produced from the expansion.		
		$\frac{1}{8 + \alpha^3 + \beta^3 + \alpha\beta} = \frac{1}{\frac{49}{4} - \frac{85}{8} + \frac{7}{2}} \left(= \frac{8}{41} \right)$ Expansion of denominator with their values.	M1
	$x^2 - \frac{14}{41}x + \frac{8}{41} (=0)$	Applies x^2 – (their sum) x + their product (= 0) Depends on at least one previous M awarded.	dM1
	$41x^2 - 14x + 8 = 0$	Allow any integer multiple. Must include "=0"	A1
			(4)
			Total 9

Question Number	Scheme	Notes	Marks
4	$f(z) = 2z^3 - z^2 + az + b$		
(a)	(z=)-1+3i	Correct complex number	B1
<i>a</i> .)			(1)
(b)	$z = -1 \pm 3i \Rightarrow (z - (-1 + 3i))(z - (-1 - 3i)) \rightarrow z^2 +z +$ Or e.g. $Sum = -2, Product = (-1)^2 - (3i)^2 = 10 \rightarrow z^2 +z +$ Correct strategy to find the quadratic factor		M1
	$z^2 + 2z + 10$	Correct expression	A1
	$f(z) = (z^2 + 2z + 10)(2z - 5)$	Uses an appropriate method to find the linear factor	M1
	$\Rightarrow f(z) = 2z^3 - z^2 + 10z - 50$ or $a = 10, b = -50$	Correct cubic or correct constants	A1
(c)	(2.5, 0)	-1±3i correctly plotted with vectors or dots or crosses etc. May be labelled by coordinates or on axes. Do not be concerned about scale but should look like reflections in the real line.	B1
	(-1, -3) Re	(2.5, 0) plotted correctly or follow through their non-zero real root correctly plotted. May be labelled by coordinates or on axes. Do not be too concerned about scale but e.g (2.5,0) should be further from <i>O</i> than (-1,0) is.	B1ft
			(2)
Alt (b)	$f(-1+3i) = 0 \Rightarrow 2(-1+3i)^3 - (-1+3i)^3 = 0$	$\frac{1}{1+2i)^2+a(-1+2i)+b=0}$	Total 7
(%)	$Im(f(-1+3i)) = 0 \Rightarrow 2(-1+3i) - (-1+3i)$ $Im(f(-1+3i)) = 0 \Rightarrow 2(9-27)$ Or e.g $f(-1+3i) - f(-1-3i) = 0 \Rightarrow 2(2(9i-6))$ Correct full strategy to	$a = (-6) + 3a = 0 \Rightarrow a = \dots$ $a = (-6) + 3a = 0 \Rightarrow a = \dots$ $a = (-6) + 3a = 0 \Rightarrow a = \dots$	M1
	a = 10 or b = -50	One correct value.	A1
	E.g. $Re(f(-1+3i)) = 0 \Rightarrow 2(-1+2i)$ Correct method to find t	,	M1
	$a = 10 \text{ and } b = -50$ or $f(z) = 2z^3 - z^2 + 10z - 50$	Correct constants or correct cubic	A1
			(4)

Question Number	Scheme	Notes	Marks
5(a)	$r(r-1)(r-3) = r^3 - 4r^2 + 3r$	Correct expansion	B1
	$\sum_{r=1}^{n} (r^3 - 4r^2 + 3r) = \frac{1}{4} n^2 (n+1)^2 - 4\frac{1}{6}$ M1: Attempt to use at least two of the	ne standard formulae correctly	M1A1
	A1: Correct ex $= \frac{1}{12} n(n+1) [3n(n+1) - 8(2n+1) + 18]$	Attempt to factorise $\frac{1}{12}n(n+1)$ from an expression with these factors. Depends on previous M.	dM1
	Note: for attempts that first expand to a quartic this mark may be awarded at the point the relevant factors are taken out provided a suitable quadratic factor is seen before the final answer.		
	$= \frac{1}{12}n(n+1)[3n^2 - 13n + 10]$ $= \frac{1}{12}n(n+1)(n-1)(3n-10)*$	Cso with $3n^2 - 13n + 10$ (or another appropriate correct quadratic) seen before the final printed answer.	A1*
			(5)
(b)	$\sum_{r=n+1}^{2n+1} r(r-1)(r-3) = \frac{1}{12} (2n+1)(2n+2)2n$ Attempts f (2n+1)	12	M1
	Attempts f $(2n + 1)$ = $\frac{1}{12}n(n+1)[4(2n+1)(6n-7)-(n-1)(3n+1)]$	$[n-10]$ = $\frac{1}{12}n(n+1)(n^2 +n +)$	
	Attempt to factor out $\frac{1}{12}n(n+1)$ and simplify For attempts expanding to a quartic first, score for		dM1
	$= \frac{1}{12}n(n+1)(45n^2 - 19n - 38)$	Cao	A1
			(3)
			Total 8

Question Number	Scheme	Notes	Marks
6(a)	$\left(\frac{a}{\sqrt{k}}, a\sqrt{k}\right)$	Correct coordinates – need not be simplified, so accept any equivalents.	B1
	$xy = a^2 \Rightarrow y = a^2 x^{-1}$ $\Rightarrow \frac{dy}{dx} = -a^2 x^{-2} = -a^2 \left(\frac{a}{\sqrt{k}}\right)^{-2} (=-k)$	Correct method for the gradient of the tangent at P . Must have substituted for x (and y) in their derivative.	M1
	$y - a\sqrt{k} = -k\left(x - \frac{a}{\sqrt{k}}\right) \text{ oe}$ or $y = -kx + c \Rightarrow c = a\sqrt{k} + \frac{ka}{\sqrt{k}};$ $\Rightarrow y = -kx + 2a\sqrt{k} \text{ oe}$	M1:Correct straight line method for the tangent at P A1: Correct equation. Need not be fully simplified but do not accept $\sqrt{a^2}$ terms left unsimplified. ISW after a suitable correct equation seen.	M1A1
			(4)
(b)	$x = 0 \Rightarrow y = \dots y = 0 \Rightarrow x = \dots$	Uses $x = 0$ and $y = 0$ to find A and B	M1
	$A\!\!\left(\!\frac{2a}{\sqrt{k}},0\right)\;B\!\left(0,2a\sqrt{k}\right)$	Correct coordinates with same criteria as in (a).	A1
			(2)
(c)	Area = $\frac{1}{2} \times 2a\sqrt{k} \times \frac{2a}{\sqrt{k}} = \dots$	Fully correct strategy for the area	M1
	$= 2a^2$ Which is independent of k	All correct with conclusion	A1
			(2)
			Total 8

Question Number	Scheme	Notes	Marks
7(i)(a)	$\begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	Correct matrix	B1
(b)	(1 0)		(1)
	$\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$	Correct matrix	B1
			(1)
(c)	$ \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} $	Attempt to multiply the right way round. Implied by a correct answer (for their (a) and (b)) if no working is shown, but M0 if incorrect with no working.	M1
	$\begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{5}{2} & -\frac{5\sqrt{3}}{2} \end{pmatrix}$	Correct matrix	A1
			(2)
(ii)(a)	$\begin{vmatrix} k & k+3 \\ -5 & 1-k \end{vmatrix} = k(1-k) - (-5)(k+3)$	Correct method for the determinant. (Allow miscopy slips only. So $k(1-k)-5(k+3)$ is M0 without further evidence.)	M1
	$=-k^2+6k+15$	Correct simplified expression	A1
	N + 0N + 12	1	(2)
(b)	$-k^{2} + 6k + 15 = \frac{16k}{2} \Rightarrow k = \dots$ or $-k^{2} + 6k + 15 = -\frac{16k}{2} \Rightarrow k = \dots$	Correct strategy for establishing at least one value for k	M1
	One of $k = -5, 3, -1, 15$	Any one correct value. Note that the negative values may be rejected here.	A1
	k = 3 and $k = 15or k = -5, 3 and k = -1, 15$	Both correct positive values and no others. Condone the inclusion of the negative values if given.	A1
			(3)
			Total 9

$dx dx y 10p$ in term or $x = 5p^2, y = 10p \Rightarrow \frac{dy}{dx} = \frac{10}{10p}$ $y - 10p = \frac{1}{p}(x - 5p^2)$ or Correct straight line method $y = \frac{1}{p}x + c \Rightarrow c = 10p - \frac{1}{p} \times 5p^2$ $py - x = 5p^2 *$ Cso	y for finding $\frac{dy}{dx}$ M1 M1 A1*
or $y = \frac{1}{p}x + c \Rightarrow c = 10p - \frac{1}{p} \times 5p^{2}$ $py - x = 5p^{2} *$ Correct straight line method Correct straight line method	
	A1*
(b) $(0, 5p)$ Correct coordinates	B1
(c) (5, 0) Correct coordinates	B1
	(1)
(d) $y = \frac{2}{p}x$ Correct equation for l_2	B1
(d) $y = \frac{2}{p}x$ Correct equation for l_2 E.g. $y = -\frac{5p}{5}(x-5)$ or Correct strategy for the equation $y = -px + c \rightarrow c = 5p$ (providing it has non-zero graphs)	
Eliminates p to obtain an eq	uation M1
$y = \frac{2}{p}x \Rightarrow p = \frac{2x}{y} \Rightarrow y = -\frac{2x}{y}(x-5)$ connecting x and y Correct equation in any form	n A1
$2x^2 + y^2 = 10x*$ Fully correct proof	A1*
Alternative for last 3 marks of (d)	(5)
$y = \frac{2}{p}x, \ y = -\frac{5p}{5}(x-5)$ $\Rightarrow x =, y =$ Solves simultaneously to fin terms of p	nd x and y in M1
$x = \frac{5p^2}{p^2 + 2}, y = \frac{10p}{p^2 + 2}$ Correct coordinates for B	A1
$2x^2 + y^2 = 2\left(\frac{25p^4}{\left(p^2 + 2\right)^2}\right) + \frac{100p^2}{\left(p^2 + 2\right)^2} = \frac{50p^4 + 100p^2}{\left(p^2 + 2\right)^2} = \frac{50p^2\left(p^2 + 100p^2\right)}{\left(p^2 + 2\right)^2}$ Completes the proof by substituting into the given equation and shows sufficiently blink the apprint and the proof of the proof o	
establish the equivalence (as above)	Total 10

_			
Question Number	Scheme	Notes	Marks
9(i)	$n = 1 \Rightarrow u_1 = 3 \times 2 - 2 \times 3 = 0$ $n = 2 \Rightarrow u_2 = 3 \times 2^2 - 2 \times 3^2 = -6$	Shows the result is true for $n = 1$ and $n = 2$. Ignore references to $n = 3$.	B1
	Substitutes $u_k = 3 \times 2^k - 2 \times 3^k$ and	N 12	M1
	$(u_{k+2} =)5u_{k+1} - 6u_k = 5(3 \times 2^{k+1} - 2 \times 3^{k+1}) - 6(3 \times 2^k - 2 \times 3^k)$		M1
	(The inductive assumption materials and the state of the	ay be tacit for this mark.)	
	$(u_{k+2}) = 15 \times 2^{k+1} - 10 \times 3^{k+1} - 18 \times 2^k + 12 \times 3^k$ = 15 \times 2^{k+1} - 9 \times 2^{k+1} - 10 \times 3^{k+1} + 4 \times 3^{k+1}	Gathers to a correct two term expression. Accept alternative forms such as	A1
	$= 15 \times 2^{k+1} - 9 \times 2^{k+1} - 10 \times 3^{k+1} + 4 \times 3^{k+1}$ $= 6 \times 2^{k+1} - 6 \times 3^{k+1}$	$12 \times 2^k - 18 \times 3^k$	AI
		Achieves this result with no errors – must	
	$u_{k+2} = 3 \times 2^{k+2} - 2 \times 3^{k+2}$	be clear it is u_{k+2} but this may have been	A1
		seen at the start.	
	If the result is true for $n = k$ and $n = k + 1$ the		
	been shown to be true for $n = 1$ and $n = 1$		A1cso
	Correct conclusion including all the bold points in some form. Depends on all previous marks.		
			(5)
(ii)	$f(n) = 3^{3n-2} + 2^{4n-1}$		
	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	$f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{4(k+1)-1} - 3^{3k-2} - 2^{4k-1}$		
	$= 27 \times 3^{3k-2} + 16 \times 2^{4k-1} - 3^{3k-2} - 2^{4k-1} = 26$		M1
	Attempts $f(k+1) - f(k)$ and reaches $\alpha \times 1$	$3^{3k-2} + \beta \times 2^{4k-1}$ or $\alpha \times 3^{3k} + \beta \times 2^{4k}$	
	(Mark variations on the theme as appropri		
	$=15\times \left(3^{3k-2}+2^{4k-1}\right)+11\times 3^{3k-2} \text{ or }$		
	$= 26 \times \left(3^{3k-2} + 2^{4k-1}\right) - 11 \times 2^{4k-1}$	Correct expression with $f(k)$ evident.	A1
	$f(k+1) = 16f(k) + 11 \times 3^{3k-2}$ or	Makes $f(k + 1)$ the subject and states divisible by 11 (oe – may be implied by conclusion), or gives full reason why $f(k)$	dM1
	$f(k+1) = 27f(k) - 11 \times 2^{4k-1}$	+ 1) is divisible by 11.	
	If the second is the second of	Dependent on first M	
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .		
	Correct conclusion including all the bold points in some form. Depends on all previous		Alcso
	marks	5.	(5)
		I .	Total 10

ALT 1	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	$f(k+1) = 3^{3k+1} + 2^4$	k+3	
	$f(k+1) = 27 \times 3^{3k-2} + 16 \times 2^{4k-1} \text{ or } 3 \times 3^{3k} + 8 \times 2^{4k}$		
	Attempts f $(k+1)$ and reduces power to $\alpha \times 3^{3k-1}$	$\alpha^2 + \beta \times 2^{4k-1}$ or $\alpha \times 3^{3k} + \beta \times 2^{4k}$	
	$f(k+1) = 16 \times (3^{3k-2} + 2^{4k-1}) + 11 \times 3^{3k-2}$ or		
	$f(k+1) = 27 \times (3^{3k-2} + 2^{4k-1}) - 11 \times 2^{4k-1}$	Correct expression	A1
	$f(k+1) = 16f(k) + 11 \times 3^{3k-2}$ or	States divisible by 11 (oe– may be implied by conclusion)	dM1
	$f(k+1) = 27f(k) - 11 \times 2^{4k-1}$	Depends on first M	divii
	If the result is true for $n = k$ then it is true for $n = k$		
	be true for $n = 1$, then the result is true for all n . Correct conclusion including all the bold points in some form. Depends on all previous		
	marks.	some form. Depends on an previous	
ALT 2	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	Let $3^{3k-2} + 2^{4k-1} = 11M$		
	$f(k+1) = 3^{3k+1} + 2$	4k+3	
	$f(k+1) = 27(11M - 2^{4k-1}) + 2^{4k+3} \text{ or } 3^{3k+1} + 16(11M - 3^{3k-2})$		
	Attempt $f(k+1)$ and expresse	s in terms of M	
	$f(k+1) = 297M - 11 \times 2^{4k-1} \text{ or } 176M + 11 \times 3^{3k-2}$	Correct expression	A1
	$f(k+1) = 11(27M - 2^{4k-1}) \text{ or } 11(16M + 3^{3k-2})$	Takes out a factor of 11, or gives full reason why $f(k+1)$ is divisible by 11. Depends on first M	dM1
	If the result is true for $n = k$ then it is true for $n = k$		
	be true for $n = 1$, then the result Correct conclusion including all the bold points in s		Alcso
	marks.		
ALT 3	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	$f(k+1) - \alpha f(k) = 3^{3k+1} + 2^{4k+3} -$	$-\alpha\left(3^{3k-2}+2^{4k-1}\right)$	M1
	Attempts $f(k+1) - \alpha f(k)$ where $\alpha = 16$ or	27 or other appropriate value.	
	= $(27-\alpha)3^{3k-2} + (16-\alpha)2^{4k-1}$ e.g.	Correct expression for their α where	
	$=11\times3^{3k-2}\left(+(16-16)\times2^{4k-1}\right)$ or	a common factor of 11 is clear. (E.g.	A1
	$= ((27-27)\times3^{3k-2})-11\times2^{4k-1}$	$\alpha = 5$)	
		Makes $f(k + 1)$ the subject in an	
	E.g. $f(k+1) = 16f(k) + 11 \times 3^{3k-2}$ or	expression where 11 is a clear common factor and states divisible	13.54
	$f(k+1) = 27f(k) - 11 \times 2^{4k-1}$	by 11 (oe – may be implied by	dM1
		conclusion). Dependent on first M	
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to		
	be true for $n = 1$, then the result is true for all n .		Alcso
	Correct conclusion including all the bold points in some form. Depends on all previous		11100
	marks.		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom